Part Number Hot Search : 
60601B 20PT1021 FMG23S T211029 A8187SLT SBR10 ST207E UGSP15D
Product Description
Full Text Search
 

To Download SKW25N120 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  SKW25N120 power semiconductors 1jul-02 fast igbt in npt-technology with soft, fast recovery anti-parallel emcon diode ? 40lower e off compared to previous generation ? short circuit withstand time ? 10 s ? designed for: - motor controls - inverter - smps ? npt-technology offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability ? complete product spectrum and pspice models : http://www.infineon.com/igbt/ type v ce i c e off t j package ordering code SKW25N120 1200v 25a 2.9mj 150 c to-247ac q67040-s4282 maximum ratings parameter symbol value unit collector-emitter voltage v ce 1200 v dc collector current t c = 25 c t c = 100 c i c 46 25 pulsed collector current, t p limited by t jmax i cpuls 84 turn off safe operating area v ce 1200v, t j 150 c - 84 diode forward current t c = 25 c t c = 100 c i f 42 25 diode pulsed current, t p limited by t jmax i fpuls 80 a gate-emitter voltage v ge 20 v short circuit withstand time 1) v ge = 15v, 100v v cc 1200v, t j 150 c t sc 10 s power dissipation t c = 25 c p tot 313 w operating junction and storage temperature t j , t stg -55...+150 soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260 c 1) allowed number of short circuits: <1000; time between short circuits: >1s. g c e p-to-247-3-1 (to-247ac)
SKW25N120 power semiconductors 2jul-02 thermal resistance parameter symbol conditions max. value unit characteristic igbt thermal resistance, junction ? case r thjc 0.4 diode thermal resistance, junction ? case r thjcd 1.15 thermal resistance, junction ? ambient r thja to-247ac 40 k/w electrical characteristic, at t j = 25 c, unless otherwise specified value parameter symbol conditions min. typ. max. unit static characteristic collector-emitter breakdown voltage v (br)ces v ge =0v, i c =1500 a 1200 - - collector-emitter saturation voltage v ce(sat) v ge = 15v, i c =25a t j =25 c t j =150 c 2.5 - 3.1 3.7 3.6 4.3 diode forward voltage v f v ge =0v, i f =25a t j =25 c t j =150 c - 2.0 1.75 2.5 gate-emitter threshold voltage v ge(th) i c =1000 a, v ce = v ge 345 v zero gate voltage collector current . i ces v ce =1200v,v ge =0v t j =25 c t j =150 c - - - - 350 1400 a gate-emitter leakage current i ges v ce =0v, v ge =20v - - 100 na transconductance g fs v ce =20v, i c =25a 20 - s dynamic characteristic input capacitance c iss - 2150 2600 output capacitance c oss - 260 310 reverse transfer capacitance c rss v ce =25v, v ge =0v, f =1mhz - 110 130 pf gate charge q gate v cc =960v, i c =25a v ge =15v - 225 300 nc internal emitter inductance measured 5mm (0.197 in.) from case l e to-247ac - 13 - nh short circuit collector current 1) i c(sc) v ge =15v, t sc 10 s 100v v cc 1200v, t j 150 c - 240 - a 1) allowed number of short circuits: <1000; time between short circuits: >1s
SKW25N120 power semiconductors 3jul-02 switching characteristic, inductive load, at t j =25 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) -4560 rise time t r -4052 turn-off delay time t d(off) - 730 950 fall time t f -3039 ns turn-on energy e on -2.22.9 turn-off energy e off -1.52.0 total switching energy e ts t j =25 c, v cc =800v, i c =25a, v ge =15/0v, r g =22 ? , l 1) =180nh, c 1) =40pf energy losses include ?tail? and diode reverse recovery. -3.74.9 mj anti-parallel diode characteristic diode reverse recovery time t rr t s t f - - - 90 ns diode reverse recovery charge q rr -1.0 c diode peak reverse recovery current i rrm -20 a diode peak rate of fall of reverse recovery current during t f di rr /dt t j =25 c, v r =800v, i f =25a, di f /dt =650a/ s - 470 a/ s switching characteristic, inductive load, at t j =150 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) -5060 rise time t r -3643 turn-off delay time t d(off) - 820 990 fall time t f -4250 ns turn-on energy e on -3.84.6 turn-off energy e off -2.93.8 total switching energy e ts t j =150 c v cc =800v, i c =25a, v ge =15/0v, r g =22 ? , l 1) =180nh, c 1) =40pf energy losses include ?tail? and diode reverse recovery. -6.78.4 mj anti-parallel diode characteristic diode reverse recovery time t rr t s t f - - - 280 ns diode reverse recovery charge q rr -4.3 c diode peak reverse recovery current i rrm -32 a diode peak rate of fall of reverse recovery current during t f di rr /dt t j =150 c v r =800v, i f =25a, di f /dt =750a/ s - 130 a/ s 1) leakage inductance l and stray capacity c due to dynamic test circuit in figure e.
SKW25N120 power semiconductors 4jul-02 i c , collector current 10hz 100hz 1khz 10khz 100khz 0a 20a 40a 60a 80a 1 00 a t c =110c t c =80c i c , collector current 1v 10v 100v 1000v 0.1a 1a 10a 1 00a dc 1ms 200 s 50 s 15 s t p =1 s f , switching frequency v ce , collector - emitter voltage figure 1. collector current as a function of switching frequency ( t j 150 c, d = 0.5, v ce = 800v, v ge = +15v/0v, r g = 22 ? ) figure 2. safe operating area ( d = 0, t c = 25 c, t j 150 c) p tot , power dissipation 25c 50c 75c 100c 125c 0w 50w 100w 150w 200w 250w 300w 350w i c , collector current 25c 50c 75c 100c 125c 0a 10a 20a 30a 40a 50a 60a t c , case temperature t c , case temperature figure 3. power dissipation as a function of case temperature ( t j 150 c) figure 4. collector current as a function of case temperature ( v ge 15v, t j 150 c) i c i c
SKW25N120 power semiconductors 5jul-02 i c , collector current 0v 1v 2v 3v 4v 5v 6v 7v 0a 10a 20a 30a 40a 50a 60a 70a 80a 15v 13v 11v 9v 7v v ge =17v i c , collector current 0v 1v 2v 3v 4v 5v 6v 7v 0a 10a 20a 30a 40a 50a 60a 70a 80a 15v 13v 11v 9v 7v v ge =17v v ce , collector - emitter voltage v ce , collector - emitter voltage figure 5. typical output characteristics ( t j = 25 c) figure 6. typical output characteristics ( t j = 150 c) i c , collector current 3v 4v 5v 6v 7v 8v 9v 10v 11 v 0a 10a 20a 30a 40a 50a 60a 70a 80 a t j =-40c t j =+150c t j =+25c v ce(sat) , collector - emitter saturation voltage -50c 0c 50c 100c 150c 0v 1v 2v 3v 4v 5v 6v i c =50a i c =25a i c =12.5a v ge , gate - emitter voltage t j , junction temperature figure 7. typical transfer characteristics ( v ce = 20v) figure 8. typical collector-emitter saturation voltage as a function of junction temperature ( v ge = 15v)
SKW25N120 power semiconductors 6jul-02 t , switching times 0a 20a 40a 60a 10ns 100ns 1 000ns t r t d(on) t f t d(off) t , switching times 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 10ns 100ns 1000ns t r t d(on) t f t d(off) i c , collector current r g , gate resistor figure 9. typical switching times as a function of collector current (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, r g = 2 2 ? , dynamic test circuit in fig.e ) figure 10. typical switching times as a function of gate resistor (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, i c = 25a, dynamic test circuit in fig.e ) t , switching times -50c 0c 50c 100c 150c 10ns 100ns 1 000ns t r t d(on) t f t d(off) v ge(th) , gate - emitter threshold voltage -50c 0c 50c 100c 150c 0v 1v 2v 3v 4v 5v 6v typ. min. max. t j , junction temperature t j , junction temperature figure 11. typical switching times as a function of junction temperature (inductive load, v ce = 800v, v ge = +15v/0v, i c = 25a, r g = 2 2 ? , dynamic test circuit in fig.e ) figure 12. gate-emitter threshold voltage as a function of junction temperature ( i c = 0.3ma)
SKW25N120 power semiconductors 7jul-02 e , switching energy losses 0a 20a 40a 60a 0mj 5mj 10mj 15mj 20mj 25mj e on * e off e ts * e , switching energy losses 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 0mj 2mj 4mj 6mj 8mj 10mj e ts * e on * e off i c , collector current r g , gate resistor figure 13. typical switching energy losses as a function of collector current (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, r g = 2 2 ? , dynamic test circuit in fig.e ) figure 14. typical switching energy losses as a function of gate resistor (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, i c = 25a, dynamic test circuit in fig.e ) e , switching energy losses -50c 0c 50c 100c 150c 0mj 2mj 4mj 6mj 8mj e ts * e on * e off z thjc , transient thermal impedance 1s 10s 100s 1ms 10ms 100ms 1 s 10 -3 k/w 10 -2 k/w 10 -1 k/w 0.01 0.02 0.05 0.1 0.2 single pulse d =0.5 t j , junction temperature t p , pulse width figure 15. typical switching energy losses as a function of junction temperature (inductive load, v ce = 800v, v ge = +15v/0v, i c = 25a, r g = 2 2 ? , dynamic test circuit in fig.e ) figure 16. igbt transient thermal impedance as a function of pulse width ( d = t p / t ) *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. c 1 = r 1 r 1 r 2 c 2 = r 2 r ,(k/w) , (s) 0.07417 0.4990 0.20899 0.08994 0.08065 0.00330 0.03681 0.00038
SKW25N120 power semiconductors 8jul-02 v ge , gate - emitter voltage 0nc 100nc 200nc 300nc 0v 5v 10v 15v 20v u ce =960v c , capacitance 0v 10v 20v 30v 100pf 1nf c rss c oss c iss q ge , gate charge v ce , collector - emitter voltage figure 17. typical gate charge ( i c = 25a) figure 18. typical capacitance as a function of collector-emitter voltage ( v ge = 0v, f = 1mhz) t sc , short circuit withstand time 10v 11v 12v 13v 14v 15v 0 s 5 s 10 s 15 s 20 s 25 s 30 i c(sc) , short circuit collector current 10v 12v 14v 16v 18v 20v 0a 100a 200a 300a 400a 500a v ge , gate - emitter voltage v ge , gate - emitter voltage figure 19. short circuit withstand time as a function of gate-emitter voltage ( v ce = 1200v, start at t j = 25 c) figure 20. typical short circuit collector current as a function of gate-emitter voltage (100v v ce 1200v, t c = 25 c, t j 150 c)
SKW25N120 power semiconductors 9jul-02 t rr , reverse recovery time 300a/ s 500a/ s 700a/ s 900a/ s 0ns 100ns 200ns 300ns 400ns 500ns i f =25a i f =12a q rr , reverse recovery charge 300a/ s 500a/ s 700a/ s 900a/ s 0c 1c 2c 3c 4c 5c i f =25a i f =12a di f /dt , diode current slope di f /dt , diode current slope figure 21. typical reverse recovery time as a function of diode current slope ( v r = 800v, t j = 150 c, dynamic test circuit in fig.e ) figure 22. typical reverse recovery charge as a function of diode current slope ( v r = 800v, t j = 150 c, dynamic test circuit in fig.e ) i rr , reverse recovery current 300a/ s 500a/ s 700a/ s 900a/ s 0a 10a 20a 30a 40a 50a i f =25a i f =12a di rr /dt , diode peak rate of fall of reverse recovery current 300a/ s500a/ s 700a/ s 900a/ s 0a/ s 100a/ s 200a/ s 300a/ s 400a/ di f /dt , diode current slope di f /dt , diode current slope figure 23. typical reverse recovery current as a function of diode current slope ( v r = 800v, t j = 150 c, dynamic test circuit in fig.e ) figure 24. typical diode peak rate of fall of reverse recovery current as a function of diode current slope ( v r = 800v, t j = 150 c, dynamic test circuit in fig.e )
SKW25N120 power semiconductors 10 jul-02 i f , forward current 0v 1v 2v 3v 4v 0a 20a 40a 60a 80 a t j =150c t j =25c v f , forward voltage 0c 40c 80c 120c 0.0v 0.5v 1.0v 1.5v 2.0v 2.5v 3.0v i f =50a i f =25a i f =12a v f , forward voltage t j , junction temperature figure 25. typical diode forward current as a function of forward voltage figure 26. typical diode forward voltage as a function of junction temperature z thjcd , transient thermal impedance 10s 100s 1ms 10ms 100ms 1 s 10 -2 k/w 10 -1 k/w 10 0 k/w 0.01 0 . 0 2 0.05 0.1 0.2 single pulse d =0.5 t p , pulse width figure 27. diode transient thermal impedance as a function of pulse width ( d = t p / t ) c 1 = r 1 r 1 r 2 c 2 = r 2 r ,(k/w) , (s) = 0.05339 0.30438 0.40771 0.09698 0.22473 0.00521 0.46420 0.00042
SKW25N120 power semiconductors 11 jul-02 dimensions symbol [mm] [inch] min max min max a 4.78 5.28 0.1882 0.2079 b 2.29 2.51 0.0902 0.0988 c 1.78 2.29 0.0701 0.0902 d 1.09 1.32 0.0429 0.0520 e 1.73 2.06 0.0681 0.0811 f 2.67 3.18 0.1051 0.1252 g 0.76 max 0.0299 max h 20.80 21.16 0.8189 0.8331 k 15.65 16.15 0.6161 0.6358 l 5.21 5.72 0.2051 0.2252 m 19.81 20.68 0.7799 0.8142 n 3.560 4.930 0.1402 0.1941 ? p 3.61 0.1421 q 6.12 6.22 0.2409 0.2449 to-247ac
SKW25N120 power semiconductors 12 jul-02 figure a. definition of switching times i rrm 90% i rrm 10% i rrm di /dt f t rr i f i,v t q s q f t s t f v r di /dt rr q=q q rr s f + t=t t rr s f + figure c. definition of diodes switching characteristics p(t) 12 n t(t) j figure d. thermal equivalent circuit figure b. definition of switching losses figure e. dynamic test circuit leakage inductance l =180nh, and stray capacity c =40pf.
SKW25N120 power semiconductors 13 jul-02 published by infineon technologies ag i gr ., bereich kommunikation st.-martin-strasse 53, d-81541 mnchen ? infineon technologies ag 1999 all rights reserved. attention please! the information herein is given to describe certain components and shall not be considered as warranted characteristics. terms of delivery and rights to technical change reserved. we hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. infineon technologies is an approved cecc manufacturer. information for further information on technology, delivery terms and conditions and prices please contact your nearest infineon technologies office in germany or our infineon technologies representatives worldwide (see address list). warnings due to technical requirements components may contain dangerous substances. for information on the types in question please contact your nearest infineon technologies office. infineon technologies components may only be used in life-support devices or systems with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of SKW25N120

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X